

Cambridge International AS & A Level

CANDIDATE NAME						
CENTRE NUMBER				NDIDATE MBER		

CHEMISTRY 9701/51

Paper 5 Planning, Analysis and Evaluation

May/June 2021

1 hour 15 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working, use appropriate units and use an appropriate number of significant figures.

INFORMATION

- The total mark for this paper is 30.
- The number of marks for each question or part question is shown in brackets [].

This document has 8 pages. Any blank pages are indicated.

IB21 06_9701_51/4RP © UCLES 2021

[Turn over

1 Hydrogen peroxide decomposes slowly at room temperature to give water and oxygen.

$$2H_2O_2(aq) \rightarrow 2H_2O(I) + O_2(g)$$

The **initial** rate of this reaction can be increased by the addition of a metal oxide catalyst.

A student is asked to investigate which metal oxide catalyst is best at increasing the **initial** rate of this reaction by using a method which involves the collection of oxygen.

The student is provided with the following metal oxides: copper(II) oxide, iron(III) oxide, manganese(IV) oxide, nickel(II) oxide and titanium(IV) oxide.

The student is also provided with an excess volume, of a known concentration, of aqueous hydrogen peroxide and any laboratory equipment needed.

(a)	(i)	State the independent variable.	
			[1]
	(ii)	State the dependent variable.	
			[1]
(b)	Sta	te two variables that would need to be controlled.	
	1		
	2		
			[2]

(c) Draw a labelled diagram of the assembled apparatus that could be used to carry out these experiments. The apparatus should allow the accurate recording of the oxygen produced.

https://xtremepape.rs/

(d)	(i)	What measurements need to be recorded during the course of each experiment to allow the initial rate to be determined?				
		[1]				
	(ii)	How is the initial rate determined using these measurements?				
		[1]				
(e)	Hov	w can the student ensure that the results are reliable?				
		[1]				
(f)	coll	ggest an alternative method to investigate these reactions which does not include the ection of gas.				
		[1]				
(g)		ce the reaction has finished, how can the student demonstrate that the metal oxide has not en affected by the reaction?				
		[2]				
(h)	Wh	en aqueous hydrogen peroxide is stored there is a small hole in the lid of the bottle.				
	Suç	ggest why this is necessary.				
		[1]				
		[Total: 14]				

2 A student is given 250.0 cm³ of solution containing a mixture of Fe²+ and Fe³+ ions. The student is asked to find the total mass of iron ions and the percentage by mass of Fe³+ in the solution by performing titrations with aqueous potassium manganate(VII), KMnO₄.

The student is told that the Fe³⁺(aq) ions can be reduced to Fe²⁺(aq) ions by reaction with zinc.

The student is given the following instructions.

- Calculate the mass of KMnO₄ needed to make 500.0 cm³ of 0.0200 mol dm⁻³ KMnO₄(aq).
- Record the mass of an empty plastic weighing boat (a small container used to hold solid samples).
- Add the calculated mass of KMnO₄ to the weighing boat.
- Transfer the KMnO₄ from the weighing boat into a 100 cm³ beaker.
- Add 50 cm³ of distilled water to the beaker.
- Transfer the mixture from the beaker into a 500.0 cm³ volumetric flask.
- Make up to the graduation mark, dropwise, with distilled water.
- (a) (i) Calculate the mass of KMnO₄ needed to make 500.0 cm³ of 0.0200 mol dm⁻³ KMnO₄(aq).

[A_.: K, 39.1; Mn, 54.9; O, 16.0]

mass of $KMnO_4$ needed = g [1]

(ii) The student used a balance accurate to two decimal places.

Calculate the percentage error in weighing the mass of the KMnO₄ by difference.

If you were unable to calculate a value for **2(a)(i)** use the mass 1.75g. This is **not** the correct answer to **2(a)(i)**. Show your working.

percentage error = % [1]

(iii) The student noticed that some crystals of KMnO₄ were stuck to the weighing boat after adding the KMnO₄ solid to the beaker.

State how the student should modify the instructions to ensure that the measured mass of KMnO_4 was accurate.

......[1]

	(iv)		e two additional instructions that should be given to the student to ensure that the tion is prepared as accurately as possible.		
			[2]		
(b)	Who	en th	e KMnO ₄ (aq) is ready for use, the student is given additional instructions.		
	ste	p 1	Fill a burette with 0.0200 mol dm ⁻³ KMnO₄(aq).		
	ste	p 2	Using a measuring cylinder, transfer 25.00 cm³ of Fe²+(aq)/Fe³+(aq) solution into a conical flask. Add 10 cm³ of 1.0 mol dm⁻³ sulfuric acid to the conical flask.		
	ste	р 3			
	ste	p 4	Titrate this acidified solution of $Fe^{2+}(aq)/Fe^{3+}(aq)$ with $0.0200moldm^{-3}$ KMnO ₄ (aq) until the end-point.		
	ste	p 5	Repeat titrations until the titres are concordant. This set of results is set A .		
	ste	р 6	Using a measuring cylinder, add $100\mathrm{cm^3}$ of the $\mathrm{Fe^{2^+}(aq)/Fe^{3^+}(aq)}$ solution into a beaker then add excess zinc. Allow time for reduction to $\mathrm{Fe^{2^+}(aq)}$ to take place.		
	ste	p 7	Filter the mixture into a beaker.		
	ste	р 8	Transfer 25.00cm^3 of the filtrate into a conical flask and add 10cm^3 of 1.0moldm^{-3} sulfuric acid.		
	ste	p 9	Titrate this acidified solution of the filtrate with 0.0200 $\rm moldm^{-3}~KMnO_4(aq)$ until the end-point.		
	ste	p 10	Repeat steps 8 and 9 twice. This set of results is set B .		
	(i)	How	should the burette be prepared for use before it is filled in step 1 ?		
			[1]		
	(ii)	Wha	at must be done to ensure as accurate an end-point as possible?		
			[1]		

(c)	(i)	Identify an experimental weakness in step 2 . Explain how this would affect the results.	
			[1]
	(ii)	How could this weakness be overcome?	
			[1]
(d)	The	e results for each set of titrations are shown.	

set A

	rough	titration 1	titration 2	titration 3
final volume/cm ³	18.40	17.25	34.55	18.00
initial volume/cm ³	0.65	0.15	17.25	0.95
titre/cm³				

set B

	rough	titration 1	titration 2	titration 3
final volume/cm ³	45.05	43.60	43.70	
initial volume/cm ³	0.20	0.15	0.10	
titre/cm ³				

(i) Complete both tables and calculate an appropriate average titre for each set of results. The student could **not** carry out titration 3 in **set B**.

Record the average titre to **one decimal place**.

set A average titre =	 cm ³
set B average titre =	 cm ³ [2]

(11)	The reaction taking place during the titrations is shown by the equation.
	$MnO_4^-(aq) + 5Fe^{2+}(aq) + 8H^+(aq) \rightarrow Mn^{2+}(aq) + 5Fe^{3+}(aq) + 4H_2O(I)$
	Calculate the mass of Fe^{2+} ions in $100 cm^3$ of the reduced solution, produced in step 6 , by using the appropriate average titre from (d)(i) .
	Give your answer to three significant figures.
	[A _r : Fe, 55.8]
	mass of Fe ²⁺ ions = g [2
(iii)	Calculate the mass of Fe^{2+} ions in the original 250.0 cm ³ Fe^{2+} (aq)/ Fe^{3+} (aq) solution, using the appropriate average titre from 2(d)(i) .
	mass of Fe ²⁺ ions = g [1]
(iv)	Calculate the percentage by mass of Fe^{3+} ions in the original 250.0 cm ³ $Fe^{2+}(aq)/Fe^{3+}(aq)$ solution.
	percentage by mass of Fe ³⁺ ions = % [1]
(v)	State what change could be made to the procedure to enable titration 3 to be carried ou in set B .
	[Total: 16

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.